GN-232

9

0

6

101172

V Semester B.A./B.Sc. Examination, December - 2019 (CBCS) (F+R) 2016-17 and Onwards)

MATHEMATICS - V

Time: 3 Hours Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions.

5x2=10

- 1. (a) Give an example of
 - (i) a ring with zero divisor
 - (ii) a non-commutative ring with unity
 - (b) In a ring $(R, +, \cdot)$ prove that $a \cdot (b-c) = a \cdot b a \cdot c \ \forall a, b, c \in R$.
 - (c) Define principal and maximal ideals of a ring R.
 - (d) Find the maximum directional derivative of $\phi = x^3y^2z$ at the point (1, -2, 3).
 - (e) If $\vec{f} = 3x^2 \hat{i} + 5xy^2 \hat{j} + xyz^3 \hat{k}$ then, find div \vec{f} at (1, 2, 3).
 - (f) Evaluate: $\Delta^4 (1-ax)(1-bx)(1-cx)(1-dx)$.
 - (g) Write Lagrange's Interpolation formula for unequal intervals.
 - (h) Using Trapezoidal rule, evaluate $\int_{0}^{6} f(x) dx$ given:

x	0	1	2	3	4	5	6
f(x)	0.146	0.161	0.176	0.190	0.204	0.217	0.230

PART - B

Answer two full questions.

2x10=20

- 2. (a) Prove that the set $R = \{0, 1, 2, 3, 4, 5\}$ is a commutative ring w.r.t. \bigoplus_6 and \bigotimes_6 as two compositions.
 - (b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in it.

OR

P.T.O.

- (a) Prove that the necessary and sufficient conditions for a non-empty subset S to be a subsi S to be a subring of R, are:

 - Define the right and left ideals of a ring R. Show that the subset $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} | a, b \in z \right\} \text{ of } M_2(z) \text{ is a left ideal but not a right ideals of } M_2(z).$
- If 'a' is an element of a commutative ring R, then prove that 4. (a) (i) $aR = \{ar \mid r \in R\}$ is an ideal of 'R'.
 - If I is an ideal of a ring 'R' with unity and $1 \in I$ then prove that I = R.
 - Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5\}$ w.r.t. \oplus_6 and \otimes_6 as two compositions.

- If $f: R \rightarrow R'$ is a homomorphism of a ring R into R' then prove that 5.
 - f(0) = 0' where 0 and 0' are the zero elements of R and R' respectively.
 - $f(-a) = -f(a) \forall a \in \mathbb{R}.$
 - State and prove fundamental theorem of homomorphism of rings. (b)

PART - C

Answer **two** full questions.

2x10=20

- Find the constants a and b so that the surfaces $x^2 + ayz = 3x$ and 6. $bx^2y+z^3=(b-8)y$ intersect orthogonally at the point (1, 1, -2).
 - If ϕ is a scalar point function and f is a vector point function then prove that $\operatorname{div}(\phi \overrightarrow{f}) = \phi(\operatorname{div} \overrightarrow{f}) + (\operatorname{grad}\phi) \overrightarrow{f}$

- If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ then prove that $\nabla^2(\vec{r}^3 \vec{r}) = 18\vec{r}$ where $\vec{r} = |\vec{r}|$ 7.
 - If $\overrightarrow{F} = \nabla (x^3 + y^3 + z^3 3xyz)$ then find $\nabla \cdot \overrightarrow{F}$ and $\nabla \times \overrightarrow{F}$ (b)
- Show that $\operatorname{div}(\overrightarrow{a} \times (\overrightarrow{r} \times \overrightarrow{a})) = 2 |\overrightarrow{a}|^2$ where \overrightarrow{a} is a constant vector. (a)
 - Show that $\overrightarrow{F} = (x^2 yz) \hat{i} + (y^2 xz) \hat{j} + (z^2 xy) \hat{k}$ is irrotational. Also find (b) a scalar function ϕ such that $\overrightarrow{F} = \nabla \phi$

000

3

-3

0

0

.

900

- 9. (a) (i) If $\overrightarrow{F} = 3xy \hat{i} + 20yz^2 \hat{j} 15xz \hat{k}$ and $\phi = xyz$, then find $\operatorname{curl}(\phi \overrightarrow{F})$.
 - (ii) Show that $\overrightarrow{F} = 2x^2z \cdot (1 10xyz) + 3xz^2 \cdot k$ is solenoidal.
 - (b) Find curl(curl \overrightarrow{F}) if $\overrightarrow{F} = x^2y \hat{i} 2xz \hat{j} + 2yz \hat{k}$.

PART - D

Answer two full questions.

2x10=20

10. (a) Use the method of separation of symbols to prove that

$$u_0 - u_1 + u_2 - u_3 + \dots + \infty = \frac{1}{2}u_0 - \frac{1}{4}\Delta u_0 + \frac{1}{8}\Delta^2 u_0 - \frac{1}{16}\Delta^3 u_0 + \dots$$

(b) Obtain a function whose first difference is $x^3 + 3x^2 + 5x + 12$.

OR

11. (a) Find the number of students from the following data who secured marks not more than 45.

Marks	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Number of Students	35	48	70	40	22

- (b) Find a polynomial of lowest degree which assumes the values 10, 4, 40, 424, 620 at x=-2, 1, 3, 7 and 8 respectively, using Newton's divided difference formula.
- 12. (a) By employing Newton-Gregory backward difference formula, find f(9.7) from the following data.

I	x	8	8.5	9	9.5	10
ĺ	f(x)	50	57	64	71	75

(b) Using Simpson's $\frac{1}{3}^{rd}$ rule, Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ dividing the interval (0, 1) into 8 equal parts.

OR

- 13. (a) Applying Lagrange's formula find f(5), given that f(1)=2, f(2)=4, f(3)=8 and f(7)=128.
 - (b) Using Simpson's $\frac{3}{8}^{th}$ rule, Evaluate $\int_{4}^{5.2} \log_e x \, dx$ taking h = 0.2.